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Abstract
Cotton is a crucial crop that has a significant impact on the global economy, and the timing of the harvest is crucial for

maximizing the yield and quality of cotton fiber. However, predicting and detecting the harvesting stage of cotton plants is

a complex task that requires analyzing various factors such as plant growth, leaf senescence, and boll maturity. Traditional

methods for harvesting prediction are labor intensive and time consuming, making it essential to develop efficient and

accurate methods. In this paper, we present a novel deep adversarial network (DAN) called CropCycleNet, which combines

the features of both convolutional neural networks and generative adversarial networks. The proposed DAN can identify

different stages of cotton plant growth, detect diseases, and affect plants to ensure proper removal. We propose Histogram

base Gradients Feature Orientation Transform method influences feature descriptors and allows feature-level fusion to

improve object recognition accuracy. Experimental validation of CropCycleNet was performed to evaluate the accuracy,

precision, recall, and F1 performance metrics at various stages of cotton plant growth. The proposed DAN identified the

harvesting stage in cotton fields with 93.27% prediction accuracy, outperforming other existing state-of-the-art methods.
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1 Introduction

The cotton industry is a leading commercial crop yield

worldwide. The cotton bud, available in the perennial

cotton plant, is an essential raw material utilized for pro-

duct enhancement in various industries, such as edible oil

extraction, paper manufacturing, textiles, medicinal prod-

ucts, and livestock feed (Maghsoudi et al. 2015). Cotton

fiber must have essential characteristic features, such as

retention in color, absorbency, strength, and comfort. After

harvesting, the increased production of cotton fiber

undergoes the ginning process, which generates a consid-

erable amount of cotton waste that poses a significant

challenge (Chen et al. 2012; Mohammed and Al-Janabi

2022; Salcedo et al. 2020). The non-cotton fiber produced

during processing, such as post-harvest field thrash (PHT),

cotton gin trash (CGT), and crushed seeds, is efficiently

used for extracting edible oil. CGT comprises cotton plant

sticks, calyx, soil, and leaves (Al-Gaadi et al. 2016). These

by-products are used as soil composts and provide sup-

plemental nutritional content for livestock feed (Xu et al.

2018; Syah et al. 2022; Hacking et al. 2020). The cotton

by-product, mainly obtained from CGT, is also used in

commercial bioenergy applications. The cotton plant con-

tains several nutrients, such as phenolics, fatty acids, pro-

teins, lipids, terpenes, and carbohydrates, distributed

throughout the entire plant. The cotton and by-products

generated as organic waste are non-toxic to the environ-

ment and can be exploited as helpful energy (Wang et al.

2020; Kadhuim and Al-Janabi 2023).

The developmental phases for cotton can be divided into

five main growth stages: diseased, diseased, fresh, fresh,

and maturation. It is essential to monitor the growth stages

to ensure a standardized quality of the cotton fiber. Proper

monitoring can help optimize the harvesting process to

ensure the maximum yield and quality of the cotton fiber.

The cotton industry relies heavily on the timely harvesting

of quality cotton fiber to increase production rates. Proper

harvesting techniques are crucial to avoid significant losses

in the industrial sector. Defoliated cotton bolls in an open

stage are picked separately before the cotton is harvested

(Al-Gaadi et al. 2016; Xu et al. 2018; Syah et al. 2022;

Hacking et al. 2020). Cotton is typically harvested when

the moisture content is equal to or less than 12%, but the

cotton can suffer during the picking and ginning. Extended

harvesting times can lead to exploitation of the standard-

ized quality of the cotton plant due to harsh exposure to

open bolls. Cotton harvesting typically involves either a

stripper or spindle pickers.

Commercial cotton production involves several stages:

planting, weeding, spraying, and harvesting. Adopting

active cropping technologies, such as seeding

transplantation, plastic mulching, and plant training, is

essential in increasing cotton lint yield (Septiarini et al.

2020; Al-Janabi and Alkaim 2022; Sun et al. 2019; Shi

et al. 2022; Syazwani et al. 2021). During the harvesting

stage, many farmers are required to increase cotton pro-

duction. Optimizing the harvesting process is crucial to

ensure the cotton fiber’s maximum yield and quality.

Cotton farmers must be aware of the proper techniques for

harvesting to avoid losses in the industrial sector. In

addition to the traditional harvesting methods, new tech-

nologies and techniques can be implemented to improve

cotton production rates. The use of active cropping tech-

nologies can significantly increase the yield of cotton lint.

In contrast, the timely harvesting of quality cotton fiber can

ensure a standardized quality of the cotton plant.

Generative adversarial networks (GANs) are a type of

machine learning algorithm that use a generator network

and a discriminator network to produce realistic synthetic

images. DANs have been increasingly used in agriculture

for crop monitoring and prediction, including in the cotton

industry. Researchers have employed DANs to predict and

detect the harvesting stage of cotton fields by training the

network on a dataset of cotton field images captured at

different stages of growth and development (Syazwani

et al. 2021). Once the DAN is trained, it can be used to

produce synthetic images of the same field at different

stages of growth and development for predicting and

detecting the harvesting stage. However, there are some

drawbacks to using DANs in agriculture. One challenge is

the need for large amounts of high-quality training data.

Another challenge is that the generated images may not be

completely accurate or represent the actual field, leading to

potential errors in predictions. Additionally, DANs may

require significant computational resources and time for

training, limiting their scalability and applicability in some

settings (Al-Janabi et al. 2021).

Therefore, this paper mainly focused on the prediction

and detection of the harvesting stage of cotton fields, which

is a crucial task for maximizing the yield and quality of

cotton fiber. DANs have shown great potential for this

application, as they can learn to generate synthetic images

of cotton fields at different stages of growth and develop-

ment. The use of DANs offers a non-invasive, fast, and

efficient method for predicting and detecting the harvesting

stage of cotton fields, which can save time and resources

for cotton farmers. With further research and development,

DANs may become a standard tool for cotton farming

operations. The three essential roles of CropCycleNet are

as follows:

• Identifying different stages of cotton plant growth

CropCycleNet is designed to predict and detect the

harvesting stage of cotton plants by analyzing various
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factors such as plant growth, leaf senescence, and boll

maturity.

• Detecting diseases and affected plants CropCycleNet

can also identify if a cotton plant is affected by a

disease or is unhealthy. This is important for proper

removal as cotton plant by-products are utilized in the

commercial world market.

• Improving object recognition accuracy The proposed

CropCycleNet combines a Histogram of Oriented

Gradients (HOG) and Scale-Invariant Feature Trans-

form (SIFT) using feature-level fusion techniques to

improve the accuracy of object recognition. This can

help in identifying the harvesting stage of cotton fields

more accurately.

The rest of the paper is organized as follows: Sect. 2

presents a comprehensive review of the existing literature

related to the problem to understand better the progress

made in the specific area. Section 3 details the mathemat-

ical framework of the proposed model and its operational

flow, which is used to identify different stages of cotton

plant growth and predict the harvesting period. Section 4

presents the proposed model’s performance validation

through a comparative analysis with existing state-of-the-

art methods. Finally, the conclusion and future scope are

discussed in Sect. 5.

2 Related works

Cotton is a significant fiber crop that contributes 35% of the

global fiber supply, and China is a leading producer. Pre-

cision agriculture techniques are vital for optimizing cotton

production, and target perception is a key factor in pro-

tecting crops. Cotton has a long growth period, making it

highly susceptible to diseases and pests, requiring signifi-

cant pesticide use. Studying cotton’s target perception can

help improve pesticide spraying efficiency (Liu et al.

2022). Perception techniques such as laser, ultrasound, and

radar can be used in agriculture, and ultrasonic signals can

be used to analyze the density of the canopy in vineyards

and orchards. The live validation of point quadrats can aid

in assessing the density of the canopy in cotton fields.

In order to achieve precision spraying for pistachio

trees, ultrasonic sensors are used to sense the canopy and

guide low volume spraying (Fu et al. 2019). Radially

ranged laser sensors have also been developed for sprayers

with variable rates that match the tree’s canopy using

scanned laser technology (Lai and Tseng 2022). Laser

sensors with a wide range have been evaluated for their

accuracy in measuring complex shapes and sizes, and for

compatibility with different objects, enabling sprayers to be

adjusted to different rates (Wu et al. 2020a). The

perception of the target is dependent on both laser and

radar, and ultrasonic technology is used to estimate the

shape and volume of larger plants to guide precision

spraying. However, small and scattered fields in China

make it difficult for machinery to perform these function-

alities (Al-Janabi et al. 2020a).

Predicting crop yield in extensive and unfeasible areas

primarily relies on data collection (Ukwuoma et al. 2022).

In the cotton field, yield is measured manually by counting

and weighing the number of cotton balls and fiber content

per UA (unit area) (Wu et al. 2020b). However, with recent

advancements in technology, there has been an increase in

the use of machines for predicting crop yield (Luo et al.

2022; Apolo-Apolo et al. 2020). Various studies have

employed algorithms for counting fruits in the yield,

classifying them based on maturity level, and using robots

for harvesting (Al-Janabi et al. 2020b; Chen et al. 2022;

Harel et al. 2020). These technological innovations are

changing the landscape of agriculture, making it more

efficient and effective.

Region segmentation in images using pixelation data has

become essential for identifying regions based on their

location (Al-Janabi and Alkaim 2020). A new approach has

also been proposed for detecting the presence of cotton

balls using semantic image segmentation on specific

regions (Liu et al. 2020), which has addressed previous

issues with machinery. Advances in computational vision,

mainly using large-scale Graph Processing Units (GPUs)

(Al-Janabi 2021; Luo et al. 2021; Wu et al. 2022a, 2022b),

have led to the developing of several deep learning algo-

rithms for identifying specific stages of cotton growth. For

example, Convolutional Neural Networks (CNNs) have

been used for counting and detecting new cotton flowers in

aerial images. In contrast, other systems can count and

track fully grown cotton balls using moving images.

Additionally, algorithms have been developed to estimate

cotton yield by analyzing aerial images during harvesting.

By utilizing this information, product management in cot-

ton fields can be significantly improved.

3 Materials and methodology

The materials and methods section outlines the experi-

mental design and procedures used in the proposed DAN

for identifying the cotton harvesting period based on the

classified plant growing stages. It describes the dataset used

for training and testing, the architecture of the DAN, and

the training process, including hyperparameter settings and

evaluation metrics. The section provides a detailed account

of the methodology employed to achieve the research

objectives.
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3.1 Overview

Deep adversarial networks (DANs) have shown great

potential in identifying and detecting various objects and

features in images, including crops and plants. In the case

of cotton plants, DANs can be used to identify the stages of

plant growth and the timing of cotton ball maturation,

which can help farmers determine the optimal time for

harvesting the crop. DANs combine two neural networks, a

generator, and a discriminator, to identify and classify

different image features. The generator creates synthetic

images of the detected feature, such as a cotton ball, while

the discriminator evaluates whether the images are real or

fake. Through an iterative process of training and adjust-

ment, the generator learns to create more realistic images

that can fool the discriminator, leading to more accurate

feature detection. In the context of cotton plant harvesting,

a DAN could be trained on a dataset of images of cotton

plants at different growth stages, focusing on identifying

the presence of cotton balls in the images. The generator

would create synthetic images of cotton balls at different

stages of maturation. At the same time, the discriminator

would evaluate whether the images are real or fake based

on a ground truth dataset. As the generator improves its

ability to create realistic images, the discriminator becomes

more accurate in identifying cotton balls, leading to

improved detection and identification of mature cotton

plants. By accurately identifying the maturation stage of

cotton balls, a DAN can help farmers determine the opti-

mal time for harvesting the crop, which can lead to

improved crop yield and reduced labor costs. This tech-

nology can also enable farmers to monitor their crops more

efficiently and effectively, leading to more sustainable and

profitable cotton farming practices (Fig. 1).

To predict the harvesting stage of cotton plants in a field,

a convolutional neural network (CNN) and generative

adversarial network (GAN) are used as a deep adversarial

network (DAN). The system collects images of the cotton

plants throughout the day using cameras or mobile phones

and uses image processing to identify the harvesting stage

of the plant. However, environmental light conditions can

significantly affect image quality, so the recognition system

must be designed to work under ideal conditions. The

system requires a fixed recognition system that captures the

central part of the cotton plant from a downward, hori-

zontal angle. Images are captured at different times during

the cotton plant’s growth cycle and labeled based on three

scores corresponding to different growth stages: seedling

stage, bud stage, boll stage, and boll opening harvesting

stage. The amount of data collected during the different

growth stages varies, with more data collected during the

boll stage. During the training process, a major percentage

of the captured images are used to train the system to

recognize the different growth stages of the cotton plant.

The remaining images are used for validation. The system

considers environmental factors such as sunlight exposure,

wind flow direction, and shading of plant size to help

identify the bolls in a cotton plant, which are essential for

harvesting.

The data processing stage is essential to the cotton plant

analysis process. Images of the cotton plant undergo size

adjustment, data augmentation, and format conversion

performed using an enhanced Python script. The size of the

captured images is altered to save computing resources and

improve the analysis process’s speed. The proposed model

is more generalized via the adaptation of data augmentation

methodologies, mainly to reduce the overfitting of images.

The training set includes various data augmentation tech-

niques, such as flip horizontal, brightness regularization,

image blurring, adding noise content, and altering color

gradation, to make the model more robust. The proposed

model uses a Convolutional Neural Network (CNN) with a

deep adversarial network to convert image datasets into a

recorded format to identify the exact true images at present

in the harvesting stage in the agricultural field. The analysis

involves identifying the cotton plant in the harvesting stage

by analyzing captured images. Defoliation or harvesting

time is when the cotton is defoliated to improve boll

opening and control the regrowth of the cotton plant,

making it essential to enter the harvesting stage. The

chemicals produced from the plant at this stage improve the

efficiency of cotton harvesting, with a simultaneous

reduction in time management. Harvesting performance is

affected by various factors, such as temperature, plant

condition, product rate, and spray coverage. The tempera-

ture is the most critical primary source in determining the

cotton plant at the harvesting stage. After defoliation, the

cotton plant is suitable for harvesting only under several

optimal conditions. In the case of cool temperatures, the

defoliation process is extended for a long period, affecting

the harvesting stage of the cotton plant. The harvesting

stage is categorized into two different modes, herbicidal

and hormonal. Herbicidal harvesting affects the cotton

plant’s leaf due to the production of ethylene, whereas

hormonal harvesting increases the ethylene concentration

rate without affecting the cotton leaf.

Overall, the Deep Adversarial Network (DAN) based on

CNN and GAN provides a practical and accurate method

for identifying the harvesting stage of cotton plants in a

field. Using image processing and machine learning tech-

niques, the system can help farmers optimize their har-

vesting operations and increase crop yields.
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3.2 CropCycleNet architecture

The convolutional neural network (CNN) is a deep learning

model that can efficiently recognize and classify images of

the various growing stages of the cotton plant. The CNN

network model architecture comprises three layers for

feature extraction: the convolution layer, the max-pooling

layer, and the fully connected layer, as shown in Fig. 2. In

the convolution layer, a kernel template is applied to the

input images of the cotton plant. Each iteration collects the

elements intersecting the domain and is summed to gen-

erate a convoluted image. The template is a filter with

specific characteristic features to classify cotton images.

The pooling function is then performed on the convoluted

image based on characteristic statistical features to extract

texture information. The max-pooling, average pooling,

and L2 pooling are different types of pooling operations.

The mean value of the max-pooling layer is generated

using the texture information and convolution layer

parameters. The features extracted during the convolution

and pooling layer are collected in the fully connected layer.

In this layer, the nodes are effectively connected with each

node of the preceding layers. The CNN sequential model

continues to identify the various stages of the cotton plant

until the entire input is identified and classified.

This architecture have the same five convolutional lay-

ers, followed by three fully connected layers as AlexNet,

but with varying numbers and sizes of the kernels.

Fig. 1 The proposed DAN

operational flow for identifying

the cotton harvesting stages

Fig. 2 DAN model for predicting the harvesting period after classifying the cotton growing stages based on the H-GFOT approach
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• Convolutional Layer 1: 32 kernels of size 3 9 3 9 3,

followed by ReLU activation

• Normalization Layer (LRN—Local Response

Normalization)

• Max-Pooling Layer 1: 2 9 2 kernel with stride 2

• Convolutional Layer 2: 256 kernels of size

3 9 3 9 32 9 3, followed by ReLU activation

• Normalization Layer (LRN)

• Max-Pooling Layer 2: 2 9 2 kernel with stride 2

• Convolutional Layer 3: 384 kernels of size

3 9 3 9 3 9 32, followed by ReLU activation

• Convolutional Layer 4: 4096 kernels of appropriate size

(to match output of previous layer), followed by ReLU

activation

• Convolutional Layer 5: 4096 kernels of appropriate size

(to match output of previous layer), followed by ReLU

activation

• Max-Pooling Layer 3: 2 9 2 kernel with stride 2

• Fully Connected Layer 1: 4096 neurons

• Fully Connected Layer 2: 4096 neurons

• Fully Connected Layer 3: Number of neurons equiva-

lent to the number of classes in the cotton plant stage

classification.

Each convolutional layer would be followed by a ReLU

(Rectified Linear Unit) activation function, which intro-

duces non-linearity into the model and aids in learning

complex patterns. Also, dropout layers could be used

between the fully connected layers to avoid overfitting.

Remember, this architecture is based on the provided

information and can be further modified based on the

problem’s specifics, including the size of the input images

and the number of output classes. You should also adjust

hyperparameters such as the learning rate, batch size, and

number of epochs for optimal results.

Thus, the CNN network model efficiently extracts fea-

tures of the cotton plant and accurately classifies its various

stages. Histogram based Gradients Feature Orientation

Transform (H-GFOT) approach helps reduce deviation,

and the softmax function is utilized as an activation func-

tion to regulate the output of the network model. During

the training process, the CNN network model identifies the

dissimilarities between the predicted and original values.

The gradient descent algorithmic approach modifies the

weight to reduce the deviation. The cotton image with 16

convolution kernels is forwarded to the max-pooling layer,

and the output involved in the prediction is obtained using

the softmax function. The softmax function is a generalized

logistic function that covers multiple dimensions and is

familiarly utilized as an activation function in the neural

network to regularize the output of the proposed network

model. The softmax function is expressed as follows:

S zð Þ ¼ ezi
Pk

j¼1 e
zj
¼ r ~zð Þi; ð1Þ

where r ~zð Þi is the probability of the input vector belonging

to class j. zj is the jth element of the input vector ~z. k is the

number of classes. ezi is the standard exponential function

applied to the jth element of the input vector.
Pk

j¼1 e
zj is

the sum of the standard exponential function applied to all

elements of the input vector.

3.2.1 H-GFOT method

Integrating Histogram of Oriented Gradients and Scale-

Invariant Feature Transform using feature-level fusion

techniques results in an adaptive learning rate method that

enhances object recognition accuracy. This method is

beneficial for scaling the average moving gradient with

momentum. In the H-GFOT method, individual learning

rates for different elements are computed, and first- and

second-moment gradients are used to estimate the neural

network weights. The random variable with the Nth

moment is equal to the expected value of the Nth power of

the variable, which can be denoted mathematically as

mn ¼ E xn½ �; ð2Þ

where mn represents the Nth moment of the random vari-

able X, and E xn½ � represents the expected value of X raised

to the power of n. The Nth moment provides information

about the shape and distribution of the variable X, and it

can be used to calculate various statistical measures such as

mean, variance, and skewness. The first moment (n = 1) is

equivalent to the mean of the distribution, while the second

moment (n = 2) corresponds to the variance. Higher

moments provide more detailed information about the

distribution, but they are usually less commonly used in

practice. The concept of moments is essential in probability

theory and statistics, as it allows for analyzing and mod-

eling random variables and their distributions. The

H-GFOT method mentioned in the original text uses the

first and second moments of gradients to estimate the

learning rates of the neural network weights.

The network model produced synthetic raw data as the

generator and discriminator worked against each other.

Based on an unsupervised approach and accurate training

data, the generator in the adversarial network produced the

desired data samples. The generated data samples were

then fed as input to the discriminator, which classified them

based on the accuracy range and identified the probability

value of fake input being generated. The training process

was expressed using the following formula:

V D;Gð Þ ¼ ExPdata xð Þ logD xð Þ½ � þ EzPz zð Þ log 1� D G zð Þð Þð Þ½ �;
ð3Þ
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where V D;Gð Þ represents the adversarial loss function,

D xð Þ represents the probability that x comes from the real

dataset, G zð Þ represents the generated fake input, and

Pdata xð Þ and Pz zð Þ represent the probability distribution of

real data and noise input z, respectively. This training

process aims to minimize the adversarial loss function to

improve the model’s accuracy in recognizing cotton bolls.

3.2.2 GANs

The GAN model is utilized to predict the stage of cotton

plant growth during the harvesting stage. The system

includes a segmentation mask to improve the accuracy and

reliability of the output generated from raw images. The

generator network undergoes progressive growth during

training to produce reliable results. The network layers are

integrated in the training process, allowing the model to

convert low-resolution images into high-resolution ones.

This approach improves the stability of the generator net-

work during training. Both the generator and discriminator

networks are fed with high-resolution images to produce

double-resolution image frames. The loss function is an

essential metric used in the training and testing process to

evaluate the model’s performance and prevent overfitting.

It is the sum of errors generated during the training, vali-

dation, or testing. Using the loss function, the parameter’s

value is adjusted to minimize the corresponding loss. In the

GAN-based algorithm, the loss function is utilized in both

the generator and discriminator to optimize the output. The

expression for the GAN-based loss function is given below:

LG ~xð Þ ¼ �E ~x Pg
D ~xð Þ½ �; ð4Þ

LD x; ~x; x̂ð Þ ¼ E ~x Pg
D ~xð Þ½ � � Ex Pr

D xð Þ½ �
þ kEx̂ Px̂

rx̂D x̂ð Þ½ �2�1
� �2þeEx Pr

D xð Þ½ �2;
ð5Þ

where the loss function of the generator and discriminator

networks is represented as LG and LD, respectively. Pr

represents the data distribution, and the gradient penalty

coefficient is denoted as lambda (k), while the epsilon

penalty coefficient is denoted as epsilon (e), which is used

to prevent drifting in the loss function. The expressions for

the output sequence of the generator and the input sequence

of the discriminator are as follows:

~x ¼ G zð Þ ¼ ~xtþ1; . . .; ~xtþtoutð Þ; ð6Þ
x ¼ xt�tinþ1; . . .; xt�toutð Þ: ð7Þ

The mean Intersection-Over-Union (mIoU) is used to

evaluate the segmentation performance of the proposed

system in identifying the plants in the harvesting stage in a

cotton field. The mIoU measures the similarity between the

predicted and ground truth images. The error rate is cal-

culated by comparing the predicted image with the original

image obtained through the training and testing procedures.

The pseudocode of the proposed DAN is illustrated as

follows:

4 Results and discussion

This section presents the proposed DAN algorithm’s

analysis, testing, and validation for identifying the cotton

harvesting period based on the classified plant growing

stages. The dataset used in this study was obtained by

capturing images of the cotton field under various condi-

tions and categorizing them into training, validation, and

testing sets. The results show that the proposed method

outperforms existing methods in terms of accuracy, preci-

sion, recall, and F1-score, as measured by mean Intersec-

tion-Over-Union (mIoU) and error rate. We present the

results of our proposed DAN and demonstrate its superi-

ority over other existing methods in two ways: (1) feature

extraction improvement and (2) detection and classification

of different growth stages of cotton plants. To compare our

proposed H-GFOT algorithm with other methods,

3. Train the DANs model using the training set.

4. Evaluate the performance of the model using the validation set.

5. Test the performance of the model using the testing set.

6. Obtain the predicted plant growth stages for the input image.

7. Based on the predicted plant growing stages, classify the cotton harvesting period 

using a decision tree or a rule-based system.

8. Output the predicted cotton harvesting period.

9. End module 

Input: Pre-processed image data of the cotton field

Output: Predicted cotton harvesting period

Begin
1. Load pre-trained DANs model for plant stage classification.

2. Divide the dataset into training, validation, and testing sets.
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including Histogram of Oriented Gradients (HOG) (Sal-

cedo et al. 2020), Scale-Invariant Feature Transform

(SIFT) (Al-Gaadi et al. 2016), and Local Binary Patterns

(LBP) (Al-Janabi and Alkaim 2022), we conducted a per-

formance analysis of the feature extraction process.

Similarly, we compared the performance of our pro-

posed CropCycleNet with other existing networks such as

Recurrent Neural Networks (RNNs) (Syazwani et al.

2021), Long Short-Term Memory Networks (LSTMs) (Fu

et al. 2019), Generative Adversarial Networks (GANs)

(Wu et al. 2020b), Deep Belief Networks (DBNs) (Harel

et al. 2020), and Self-Organizing Maps (SOMs) (Liu et al.

2020) for detecting and classifying different growth stages

of cotton plants. Our proposed DAN outperformed the

existing feature extraction and performance comparison

methods. These results demonstrate the effectiveness and

superiority of our proposed DAN in accurately identifying

the harvesting period of cotton plants.

4.1 Evaluation metrics

Various performance metrics were employed to evaluate

the accuracy of the proposed model, including key per-

formance indicators such as specificity accuracy, precision,

recall, and F1-score. These metrics provide a comprehen-

sive assessment of the model’s performance in correctly

identifying and classifying the different growth stages of

the cotton plant and help determine the overall effective-

ness and efficiency of the proposed approach.

The metric accuracy measures the proportion of cor-

rectly classified samples and is expressed as

Accuracy ¼ TP þ TNð Þ = TP þ TN þ FP þ FNð Þ;
ð8Þ

where TP is a true positive, TN is a true negative, FP is a

false positive, and FN is a false negative.

Precision is the number of true positives divided by the

number of predicted positive values and is expressed as

Precision ¼ TP = TP þ FPð Þ: ð9Þ

Recall, also known as sensitivity or true positive rate, is

the proportion of true positives to the total number of actual

positive samples and is expressed as

Recall ¼ TP = TP þ FNð Þ: ð10Þ

The F1-score is a combined measure of precision and

recall and is expressed as

F1� Score ¼ 2 � Precision � Recallð Þð
= Precision þ Recallð ÞÞ:

ð11Þ

These metrics are commonly used in evaluating the

performance of classification models, including machine

learning models for identifying the growth stages of cotton

plants. By comparing the performance of the proposed

model with existing methods using these metrics, we can

determine the superiority of the proposed model in accu-

rately identifying the growth stages of the cotton plant.

4.2 Observations

The experimental results demonstrate that the proposed

model is highly effective in identifying the different growth

stages of the cotton plant based on unique features trained

in the CropCycleNet, enabling accurate detection and

classification of the crops. As shown in Fig. 3, the model

can accurately identify the different stages in randomly

selected frames, enabling precise counting and improved

harvesting processes and productivity. The model also

enables the prediction of the accurate harvesting period,

leading to increased production rates for the cotton indus-

try. According to that, the proposed DAN model is eval-

uated to identify various growth stages of the cotton plant.

The dataset is trained using the proposed method, and the

accuracy and loss curves are plotted. The proposed method

achieves a high recognition speed and accuracy of up to

93.27% using a high-resolution convolution structure. The

confusion matrices are analyzed to evaluate the precision,

recall, and F1-score of the proposed method for identifying

the seedling stage, bud stage, boll stage, boll opening stage,

and harvesting stage of the cotton plant. The results show a

100% prediction accuracy for the seedling and bud stages

and 80% accuracy for the other stages. The seedling and

bud stages also exhibit a high precision rate, while the boll

and boll opening harvesting stages have lower accuracy

despite having more data available. The accuracy and loss

function of the proposed CropCycleNet are presented in

Fig. 4, respectively. These results demonstrate the effec-

tiveness of the proposed DAN for accurately identifying

the growth stages of the cotton plant, especially in the

seedling and bud stages.

4.3 Discussion

The proposed model’s performance was evaluated in two

different scenarios: during the forenoon (10.00 am to 1 pm)

and the afternoon (2 pm to 6 pm). This evaluation

demonstrated a significant improvement in identifying the

cotton plant growth stages and analyzing each cotton boll

to predict when it will reach the harvesting stage. It is

essential to continuously monitor the crop between 6 and

8 months, as this period has the maximum chance of

affecting plant diseases that can spoil the productivity of

the cotton yield.

A confusion matrix was randomly computed to evaluate

the model’s accuracy by taking one test frame in both the

forenoon and afternoon. The results indicate that the
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maximum accuracy of cotton stage identification occurred

in the forenoon frame compared to the afternoon frame.

This difference in accuracy is because the visual quality

of the afternoon frame is lost due to reduced light reflection

in the evening, which creates some shadows that affect the

clarity of the image quality. Therefore, the maximum

probability of prediction is not achieved, which is reflected

in the confusion metrics shown in Fig. 5. These results

highlight the importance of considering the time of day

when collecting images for the model’s input. The pro-

posed model has the potential to significantly improve the

cotton yield by accurately predicting the harvesting period.

It can also help detect plant diseases early, which can

prevent damage and improve yield. The model’s perfor-

mance in different scenarios can be further improved by

developing techniques to address the limitations of image

quality in the afternoon frames, such as using image

Fig. 3 The proposed CropCycleNet model detects the different stages in randomly selected frames

Fig. 4 The proposed model training acquires an accuracy and loss function
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processing algorithms to enhance the visual quality of the

images.

The proposed model’s performance was evaluated in

two scenarios: forenoon and afternoon. The aim was to

determine the accuracy of identifying the cotton plant

growth stages and analyze each cotton boll’s harvesting

stage. The crop was monitored continuously for

6–8 months because this period had the highest risk of

plant diseases that could reduce the cotton yield. Confusion

metrics were randomly computed using one test frame in

both the forenoon and afternoon.

The results showed that the maximum accuracy of cot-

ton stage identification was achieved during the forenoon

frame compared to the afternoon frame. This was because

the visual quality of the afternoon frame was lower due to

reduced light reflection in the evening, leading to some

shadow reflections that affected the image’s clarity. As a

result, the maximum prediction probability was not

achieved in the afternoon frame. Tables 1 and 2 also

confirm this observation. Overall, the proposed model’s

performance was demonstrated to be effective in identify-

ing cotton growth stages and evaluating critical parameters

in different scenarios provided valuable insights for

improving the model’s accuracy. The overall performance

of feature extraction and prediction is comparatively ana-

lyzed with the other existing state-of-the-art methods, as

shown in Figs. 6 and 7.

5 Conclusion

This research work proposed a CropCycleNet model to

identify the growth stages of the cotton plant and predict

the harvesting period. The proposed model used a deep

learning approach and achieved an accuracy range of up to

93.27% (Forenoon) and 90.52% (Afternoon) using a con-

volution structure with high resolution. Performance met-

rics such as precision, recall, F1-score, and reliability were

considered to evaluate the model’s performance. The per-

formance evaluation results show that the proposed model

effectively identifies the growth stages of the cotton plant

and predicts the harvesting period. The confusion matrix

analysis shows that the highest accuracy of identification of

Fig. 5 Confusion metric. a Forenoon identification and b afternoon identification

Table 1 Performance of cotton plant growth and classification output

during forenoon using proposed CropCycleNet model

93.98 93.57 92.42 91.3

93.8375
94.12 93.09 92.79 92.5

93.23 93.71 94.1 94.5

94.02 91.57 92.58 93.6

Cotton
plant
stages

Accuracy Precision Recall F1-
score

Overall 
accuracy

(%)

Table 2 Performance of cotton plant growth and classification output

during afternoon using proposed CropCycleNet model

Cotton
plant
stages

Accuracy Precision Recall F1-
score

Overall 
accuracy

(%)

90.98 90.57 89.42 88.3

90.8375

91.12 90.09 89.79 89.5

90.23 90.71 91.1 91.5

91.02 88.57 89.58 90.6
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the cotton stage is achieved in the forenoon frame com-

pared to the afternoon frame. However, the proposed

model can be further improved by considering the effects

of external factors such as weather, soil quality, and dis-

eases that can affect the growth and productivity of the

cotton plant. Overall, the proposed model has the potential

to improve the efficiency and productivity of the cotton

farming industry by enabling farmers to accurately predict

the harvesting period and take appropriate measures to

ensure optimal growth and yield. Future work can be

focused on enhancing the model’s accuracy by

Fig. 6 Performance chart of

feature extraction methods

Fig. 7 Comparison

performance chart of the

prediction and classification

functions over different

methods
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incorporating additional features and improving its

robustness to external factors.
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